首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3583篇
  免费   836篇
  国内免费   1875篇
测绘学   6篇
大气科学   5篇
地球物理   379篇
地质学   5344篇
海洋学   261篇
天文学   6篇
综合类   148篇
自然地理   145篇
  2024年   16篇
  2023年   69篇
  2022年   120篇
  2021年   168篇
  2020年   167篇
  2019年   204篇
  2018年   181篇
  2017年   183篇
  2016年   202篇
  2015年   211篇
  2014年   252篇
  2013年   273篇
  2012年   313篇
  2011年   255篇
  2010年   241篇
  2009年   266篇
  2008年   297篇
  2007年   292篇
  2006年   309篇
  2005年   260篇
  2004年   230篇
  2003年   213篇
  2002年   180篇
  2001年   189篇
  2000年   161篇
  1999年   176篇
  1998年   119篇
  1997年   130篇
  1996年   107篇
  1995年   69篇
  1994年   96篇
  1993年   76篇
  1992年   61篇
  1991年   49篇
  1990年   41篇
  1989年   22篇
  1988年   19篇
  1987年   29篇
  1986年   16篇
  1985年   12篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   7篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有6294条查询结果,搜索用时 15 毫秒
81.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   

82.
Compressional and shear wave velocities and attenuation measurements have been carried out in some of the borehole samples of acidic, basic and intermediate granulites of Mahabalipuram, Tamil Nadu, India. The results have been obtained at ambient conditions using ‘time-of-flight’ pulse transmission technique at 1.0 MHz frequency. The results show linear relationships between velocity and density, and velocity and attenuation properties of the rocks. The acidic granulites show lower velocities and higher attenuation than the intermediate and basic granulites. The average values of the Poisson’s ratio of acidic, intermediate and basic granulites have been found to be 0.210, 0.241 and 0.279 respectively. The variations in velocities and attenuation in these low porosity crystalline rocks are found to be strongly influenced by their mineral composition. The laboratory velocity data (extrapolated to high pressure) of the present study and the published field velocity data from deep seismic sounding studies indicate that these granulite facies rocks may belong to mid-crustal depths only.  相似文献   
83.
Thermal expansion differences between minerals within rocks under insolation have previously been assumed to drive breakdown by means of granular disaggregation. However, there have been no definitive demonstrations of the efficacy of this weathering mechanism. Different surface temperatures between minerals should magnify thermal expansion differences, and thus subject adjacent minerals to repeated stresses that might cause breakdown through fatigue failure. This work confirms the existence of surface temperature differences between minerals in granitic rocks under simulated short-term temperature fluctuations so as to discriminate their potential for initiating granular disaggregation. The influence of colour, as a surrogate for albedo, and crystal size, as a function of thermal mass are specifically identified because of their ease of quantification. Four rock types with a range of these properties were examined, and subjected to repeated short-term temperature cycles by radiative heating and cooling under laboratory conditions. Results show that while albedo is the main control for overall and individual maximum temperatures, crystal size is the main factor controlling higher temperature differences between minerals. Thus, stones with large differences of mineral sizes can undergo magnified stresses due to thermal expansion differences.  相似文献   
84.
85.
86.
Systematic field mapping of fracture lineaments observed on aerial photographs shows that almost all of these structures are positively correlated with zones of high macroscopic and mesoscopic fracture frequencies compared with the surroundings. The lineaments are subdivided into zones with different characteristics: (1) a central zone with fault rocks, high fracture frequency and connectivity but commonly with mineral sealed fractures, and (2) a damage zone divided into a proximal zone with a high fracture frequency of lineament parallel, non-mineralized and interconnected fractures, grading into a distal zone with lower fracture frequencies and which is transitional to the surrounding areas with general background fracturing. To examine the possible relations between lineament architecture and in-situ rock stress on groundwater flow, the geological fieldwork was followed up by in-situ stress measurements and test boreholes at selected sites. Geophysical well logging added valuable information about fracture distribution and fracture flow at depths. Based on the studies of in-situ stresses as well as the lineaments and associated fracture systems presented above, two working hypotheses for groundwater flow were formulated: (i) In areas with a general background fracturing and in the distal zone of lineaments, groundwater flow will mainly occur along fractures parallel with the largest in-situ rock stress, unless fractures are critically loaded or reactivated as shear fractures at angles around 30° to σH; (ii) In the influence area of lineaments, the largest potential for groundwater abstraction is in the proximal zone, where there is a high fracture frequency and connectivity with negligible fracture fillings. The testing of the two hypotheses does not give a clear and unequivocal answer in support of the two assumptions about groundwater flow in the study area. But most of the observed data are in agreement with the predictions from the models, and can be explained by the action of the present stress field on pre-existing fractures.  相似文献   
87.
In the Sandıklı (Afyon) region, western Taurides, the Late Proterozoic rocks of the Sandıklı basement complex are composed of low-grade meta-sedimentary rocks (Güvercinoluk Formation) intruded by felsic rocks (Kestel Cayı Porphyroid Suite, KCPS). The KCPS is a deformed and highly sheared, dome-shaped rhyolitic body with a granitic core. Quartz porphyry dikes intrude both the slightly metamorphic igneous and the sedimentary rocks of the basement complex. Both the quartz porphyries and rhyolites were converted into mylonites with relict igneous textures. Geochemical data show that these felsic igneous rocks are subalkaline and mainly granitic in composition with SiO2 >72 wt% and Al2O3 >11.5 wt%. The chondrite-normalized incompatible trace element patterns are characterized by distinct negative Rb, Nb, Sr, P, Ti, and Eu with enrichment in Th, U, La, Ce, Nd, Sm, and Zr. The REE patterns of the felsic rocks indicate a strong enrichment in LREE but display slightly flat HREE patterns. According to geochemical characteristics and petrogenetic modeling, extrusive and intrusive rocks of the KCPS were probably derived from an upper continental crustal source (partial melting of granites/felsic rocks) by 18–20% fractional melting plus 18–20% Rayleigh fractional crystallization, which seems to be the most effective igneous process during the crystallization of the KCPS. Single zircon age data from the granitoids and fossils from the disconformably overlying sedimentary successions indicate that the metamorphism and the igneous event in the Taurides are related to the Cadomian orogeny. Based on the geological, geochemical and petrogenetic correlation of the post-collisional granitoids it is further suggested that the Tauride belt in western central Turkey was in a similar tectonic setting to the Gondwanan terranes in North Africa (Younger Granitoids) and southern Europe (Spain, France, Bohemia, Brno Massifs) during the Late Cadomian period.  相似文献   
88.
Contaminant migration behaviour in the unsaturated zone of a fractured porous aquifer is discussed in the context of a study site in Cheshire, UK. The site is situated on gently dipping sandstones, adjacent to a linear lagoon historically used to dispose of industrial wastes containing chlorinated solvents. Two cores of more than 100 m length were recovered and measurements of chlorinated hydrocarbons (CHCs), inorganic chemistry, lithology, fracturing and aquifer properties were made. The results show that selecting an appropriate vertical sampling density is crucial both to providing an understanding of contaminant pathways and distinguishing whether CHCs are present in the aqueous or non-aqueous phase. The spacing of such sampling should be on a similar scale to the heterogeneity that controls water and contaminant movement. For some sections of the Permo-Triassic aquifer, significant changes in lithology and permeability occur over vertical distances of less than 1 m and samples need to be collected at this interval, otherwise considerable resolution is lost, potentially leading to erroneous interpretation of data. At this site, although CHC concentrations were high, the consistent ratio of the two main components of the plume (tetrachloroethene and trichloroethene) provided evidence of movement in the aqueous phase rather than in dense non-aqueous phase liquid (DNAPL).  相似文献   
89.
Two apparently distinct, sub-parallel, paleo-subduction zonescan be recognized along the northern margin of the Tibetan Plateau:the North Qilian Suture Zone (oceanic-type) with ophioliticmélanges and high-pressure eclogites and blueschistsin the north, and the North Qaidam Belt (continental-type) inthe south, an ultrahigh-pressure (UHP) metamorphic terrane comprisingpelitic and granitic gneisses, eclogites and garnet peridotites.Eclogites from both belts have protoliths broadly similar tomid-ocean ridge basalts (MORB) or oceanic island basalts (OIB)in composition with overlapping metamorphic ages (480–440Ma, with weighted mean ages of 464 ± 6 Ma for North Qilianand 457 ± 7 Ma for North Qaidam), determined by zirconU–Pb sensitive high-resolution ion microprobe dating.Coesite-bearing zircon grains in pelitic gneisses from the NorthQaidam UHP Belt yield a peak metamorphic age of 423 ±6 Ma, 40 Myr younger than the age of eclogite formation, anda retrograde age of 403 ± 9 Ma. These data, combinedwith regional relationships, allow us to infer that these twoparallel belts may represent an evolutionary sequence from oceanicsubduction to continental collision, and continental underthrusting,to final exhumation. The Qilian–Qaidam Craton was probablya fragment of the Rodinia supercontinent with a passive marginand extended oceanic lithosphere in the north, which was subductedbeneath the North China Craton to depths >100 km at c. 423Ma and exhumed at c. 403 Ma (zircon rim ages in pelitic gneiss). KEY WORDS: HP and UHP rocks; subduction belts; zircon SHRIMP ages; Northern Tibetan Plateau  相似文献   
90.
Layers of Ca-rich garnet–clinopyroxene rocks enclosedin a serpentinite body at Hujialin, in the Su–Lu terraneof eastern China, preserve igneous textures, relict spinel ingarnet, and exsolution lamellae of Ca-rich garnet, ilmenite/magnetite,Fe-rich spinel, and also amphibole in clinopyroxene. In termsof their major and trace element compositions, the studied samplesform a trend from arc cumulates towards Fe–Ti gabbros.Reconstructed augite compositions plot on the trend for clinopyroxenein arc cumulates. These data suggest that the rocks crystallizedfrom mantle-derived magmas differentiated to various extentsbeneath an arc. The Ca-rich garnet + diopside assemblage isinferred to have formed by compressing Ca-rich augite, whereasthe relatively Mg-rich cores of garnet porphyroblasts may haveformed at the expense of spinel. The protolith cumulates weresubducted from near the crust–mantle boundary (c. 1 GPa)deep into the upper mantle (4·8 ± 0·6 GPaand 750 ± 50°C). Negatively sloped P–T pathsfor the garnet–clinopyroxene rocks and the corollary ofcorner flow induced subduction of mantle wedge peridotite arenot supported by the available data. Cooling with, or without,decompression of the cumulates after the igneous stage probablyoccurred prior to deep subduction. KEY WORDS: arc cumulates; Ca-rich garnet; garnet–clinopyroxene rocks; Su–Lu terrane; UHP metamorphism  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号